Heroku to Delta Lake

This page provides you with instructions on how to extract data from Heroku and load it into Delta Lake. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Heroku?

Heroku is a cloud platform that lets companies build, deploy, monitor, and scale apps.

What is Delta Lake?

Delta Lake is an open source storage layer that sits on top of existing data lake file storage, such AWS S3, Azure Data Lake Storage, or HDFS. It uses versioned Apache Parquet files to store data, and a transaction log to keep track of commits, to provide capabilities like ACID transactions, data versioning, and audit history.

Getting data out of Heroku

You can extract the data you want from Heroku's servers using the Heroku API. A common use case for extracting Heroku data is retrieving server logs or other event logs. There are some API endpoints related to logs, as well as command-line tools like the logs command that let you retrieve this data.

Sample Heroku data

Here's an example set of commands and responses you might see when interacting with the logs command-line tool.

$ heroku logs --ps router
2012-02-07T09:43:06.123456+00:00 heroku[router]: at=info method=GET path="/stylesheets/dev-center/library.css" host=devcenter.heroku.com fwd="204.204.204.204" dyno=web.5 connect=1ms service=18ms status=200 bytes=13
2012-02-07T09:43:06.123456+00:00 heroku[router]: at=info method=GET path="/articles/bundler" host=devcenter.heroku.com fwd="204.204.204.204" dyno=web.6 connect=1ms service=18ms status=200 bytes=20375

$ heroku logs --source app
2012-02-07T09:45:47.123456+00:00 app[web.1]: Rendered shared/_search.html.erb (1.0ms)
2012-02-07T09:45:47.123456+00:00 app[web.1]: Completed 200 OK in 83ms (Views: 48.7ms | ActiveRecord: 32.2ms)
2012-02-07T09:45:47.123456+00:00 app[worker.1]: [Worker(host:465cf64e-61c8-46d3-b480-362bfd4ecff9 pid:1)] 1 jobs processed at 23.0330 j/s, 0 failed ...
2012-02-07T09:46:01.123456+00:00 app[web.6]: Started GET "/articles/buildpacks" for 4.1.81.209 at 2012-02-07 09:46:01 +0000

$ heroku logs --source app --ps worker
2012-02-07T09:47:59.123456+00:00 app[worker.1]: [Worker(host:260cf64e-61c8-46d3-b480-362bfd4ecff9 pid:1)] Article#record_view_without_delay completed after 0.0221
2012-02-07T09:47:59.123456+00:00 app[worker.1]: [Worker(host:260cf64e-61c8-46d3-b480-362bfd4ecff9 pid:1)] 5 jobs processed at 31.6842 j/s, 0 failed ...

Preparing Heroku data

This part could be the trickiest: you need to map the data that comes out of each Heroku API endpoint or log extraction into a schema that can be inserted into your destination database. This means that, for each value in the response, you need to identify a predefined datatype (i.e. INTEGER, DATETIME, etc.) and build a table that can receive them. Depending on your log files, you may also opt to break those up into raw logs and more meaningful metadata or log portions.

The Heroku API documentation can give you a good sense of what fields will be provided by each endpoint, along with their corresponding datatypes.

Loading data into Delta Lake on Databricks

To create a Delta table, you can use existing Apache Spark SQL code and change the format from parquet, csv, or json to delta. Once you have a Delta table, you can write data into it using Apache Spark's Structured Streaming API. The Delta Lake transaction log guarantees exactly-once processing, even when there are other streams or batch queries running concurrently against the table. By default, streams run in append mode, which adds new records to the table. Databricks provides quickstart documentation that explains the whole process.

Keeping Heroku data up to date

At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.

Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Heroku.

And remember, as with any code, once you write it, you have to maintain it. If Heroku modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.

Other data warehouse options

Delta Lake on Databricks is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, PostgreSQL, or Snowflake, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. Others choose a data lake, like Amazon S3. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, To Snowflake, To Panoply, and To S3.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to move data from Heroku to Delta Lake automatically. With just a few clicks, Stitch starts extracting your Heroku data, structuring it in a way that's optimized for analysis, and inserting that data into your Delta Lake data warehouse.